LESSON PLAN OF ELECTRONICS CIRCUITS & DEVICES

NAME OF THE FACULTY :- MEENAKSHI

DISCIPLINE

: - ECE

SEMESTER

: - THIRD

SUBJECT

: - EDC

LESSON PLAN DURATION: - 15 weeks (from JULY 2019 to NOVEMBER 2019)

WORK LOAD (LECTURE/PRACTICAL) PER WEEK (IN HOURS):- LECTURE-03, PRACTICAL-02

	TOPIC		PRACTICAL	
WEEK	LECTURE DAY	TOPIC (including assignment/test)	PRACTICA L DAY	TOPIC
1 st	1st	Multistage Amplifiers Need for multistage amplifier	1st Group-1	1. Plot the frequency response of two stage RC coupled amplifier and calculate the bandwidth and compare it with single stage amplifier
	2 nd	Gain of multistage amplifier		
	3rd	Different types of multistage amplifier like RC coupled and its frequency response and bandwidth	2nd Group-2	1. Plot the frequency response of two stage RC coupled amplifier and calculate the bandwidth and compare it with single stage amplifier
2 nd	4 th	Different types of multistage amplifier like transformer coupled and its frequency response and bandwidth	3rd Group-1	2. To measure the gain of push-pullamplifier at 1KHz
_	5 th	Different types of multistage amplifier like direct coupled and its frequency response and bandwidth		
	6th	Class Test assignment	4th Group- 2	2. To measure the gain of push-pull amplifier at 1KHz
3rd	7 th	Large Signal Amplifier Difference between voltage and power Amplifiers	5th Group-1	3. To measure the voltage gain of emitter follower circuit and plot its frequency response
	8 th	Importance of impedance matching in amplifiers		
	9th	Class A, Class B amplifiers, collector efficiency and Distortion in class A,B	6thGrou p-2	3. To measure the voltage gain of emitter follower circuit and plot its frequency response
4 th	10 th	Class AB, and Class C amplifiers, collector efficiency and Distortion in class C	7 th Group-1	Revision
	11 th	Single ended power amplifiers, Graphical method of calculation (without derivation) of output power; heat dissipation curve and importance of heat sinks.	a	
	12 th	Push-pull amplifier, and complementary symmetry push-pull amplifier	8th Group-2	Revision

5 th	13 th	Class Testassignment	9th Group-1	4. Plot the frequency response curve of Hartley and Colpitts Oscillator
	14 th	Feedback in Amplifiers Basic principles and types of feedback		
	15th	Derivation of expression for gain of an amplifier employing feedback	10th Group-2	Plot the frequency response curve of Hartley and Colpitts Oscillator
6 th	16 th	Effect of feedback (negative) on gain, stability, of an amplifier	11 th Group-1	5. Plot the frequency response curve of phase shift and Wein bridge Oscillator
	17 th	Effect of feedback (negative) on distortion and bandwidth of an amplifier		
	18 th	RC coupled amplifier with emitter bypass capacitor	12 th Group-2	Plot the frequency response curve of phase shift and Wein bridge Oscillator
7 th	19 th	Emitter follower amplifier and its application	13 th Group-1	6. Use of IC 555 as monostable multivibrator and observe the output for different values of RC
	20 th	Class Testassignment		2
	21 th	Sinusoidal Oscillators Use of positive feedback	14 th Group-1	6. Use of IC 555 as monostable multivibrator and observe the output for different values of RC
8 th	22 th	Barkhausen criterion for oscillations	15 th Group-1	Revision
	23 th	Different oscillator circuits-tuned collector, Hartley and Colpitts. Their working principles (no mathematical derivation but only simple numerical problems)	·	
	24 th	Different oscillator circuits-phase shift, Wien's bridge and crystal oscillator. Their working principles (no mathematical derivation but only simple numerical problems)	16 th Group-2	Revision
9th	25 th	Class Testassignment	17 th Group-1	7. Use of IC 555 as astable multivibrator and observe the output at different duty cycles
	26 th	Tuned Voltage Amplifiers Series and parallel resonant circuits and bandwidth of resonant circuits.		*
	27 th	Multivibrator Circuits Working principle of transistor as switch	18 th Group-2	7. Use of IC 555 as astable multivibrator and observe the output at different duty cycles

10 th	28 th	Concept of multi-vibrator: astable, and its applications	19 th Group-1	8. TouseIC741(op-amplifier) as Inverter, Adder, Subtraction, Integrator,
	29 th	Concept of multi-vibrator: monostable and its applications		
	30 th	Concept of multi-vibrator: bistable and its applications	20 th Group-2	8. To useIC741(op- amplifier) as Inverter,Adder, Subtractor, Integrator,
11 th	31 th	Block diagram of IC555 and its working and applications	21 th Group-1	Revision
	32 th	IC555 as monostable multi- vibrator		
	33 th	IC555 as astable multi-vibrator	22 th Group-2	Revision
12 th	34th	IC555 as bistable multi-vibrator	23 th Group-1	Revision
	35 th	Class Testassignment		
	36 th	Operational Amplifiers Characteristics of an ideal operational amplifier and its block diagram	24 th Group-2	Revision
13 th	37 th	IC-741 and its pin configuration	25 th Group-1	Test
	38 th	Definition of differential voltage gain, CMRR, PSRR, slew rate and input offset current		
	39 th	Operational amplifier as an inverter, scale changer and adder	26 th Group-2	Test
14 th	40 th	Operational amplifier as a subtractor, differentiator and integrator	27 th Group-1	Revision
	41 th	Class Test assignment		
	42 th	Regulated DC Power Supplies Concept of DC power supply	28 th Group-2	Revision
15 th	43 th	Line and load regulation	29 th Group-1	Test
	44th	Concept of fixed voltage, IC regulators (like 7805, 7905), and variable voltage regulator like (IC 723)		•
	45 th	assignmentClass Test	30 th Group-2	Test