LESSON PLAN OF ELECTRONICS CIRCUITS & DEVICES NAME OF THE FACULTY :- MEENAKSHI DISCIPLINE : - ECE SEMESTER : - THIRD **SUBJECT** : - EDC **LESSON PLAN DURATION**: - 15 weeks (from JULY 2019 to NOVEMBER 2019) WORK LOAD (LECTURE/PRACTICAL) PER WEEK (IN HOURS):- LECTURE-03, PRACTICAL-02 | | TOPIC | | PRACTICAL | | |-----------------|------------------|---|----------------------------|---| | WEEK | LECTURE
DAY | TOPIC
(including
assignment/test) | PRACTICA
L
DAY | TOPIC | | 1 st | 1st | Multistage Amplifiers Need for multistage amplifier | 1st
Group-1 | 1. Plot the frequency response of two stage RC coupled amplifier and calculate the bandwidth and compare it with single stage amplifier | | | 2 nd | Gain of multistage amplifier | | | | | 3rd | Different types of multistage amplifier like RC coupled and its frequency response and bandwidth | 2nd
Group-2 | 1. Plot the frequency response of two stage RC coupled amplifier and calculate the bandwidth and compare it with single stage amplifier | | 2 nd | 4 th | Different types of multistage amplifier like transformer coupled and its frequency response and bandwidth | 3rd
Group-1 | 2. To measure the gain of push-pullamplifier at 1KHz | | _ | 5 th | Different types of multistage amplifier like direct coupled and its frequency response and bandwidth | | | | | 6th | Class Test assignment | 4th Group-
2 | 2. To measure the gain of push-pull amplifier at 1KHz | | 3rd | 7 th | Large Signal Amplifier Difference between voltage and power Amplifiers | 5th
Group-1 | 3. To measure the voltage gain of emitter follower circuit and plot its frequency response | | | 8 th | Importance of impedance matching in amplifiers | | | | | 9th | Class A, Class B amplifiers, collector efficiency and Distortion in class A,B | 6thGrou
p-2 | 3. To measure the voltage gain of emitter follower circuit and plot its frequency response | | 4 th | 10 th | Class AB, and Class C amplifiers,
collector efficiency and
Distortion in class C | 7 th
Group-1 | Revision | | | 11 th | Single ended power amplifiers,
Graphical method of calculation
(without derivation) of output power;
heat dissipation curve and
importance of heat sinks. | a | | | | 12 th | Push-pull amplifier, and complementary symmetry push-pull amplifier | 8th
Group-2 | Revision | | 5 th | 13 th | Class Testassignment | 9th
Group-1 | 4. Plot the frequency response curve of Hartley and Colpitts Oscillator | |-----------------|------------------|---|-----------------------------|---| | | 14 th | Feedback in Amplifiers Basic principles and types of feedback | | | | | 15th | Derivation of expression for gain of an amplifier employing feedback | 10th
Group-2 | Plot the frequency response curve of Hartley and Colpitts Oscillator | | 6 th | 16 th | Effect of feedback (negative) on gain, stability, of an amplifier | 11 th
Group-1 | 5. Plot the frequency response curve of phase shift and Wein bridge Oscillator | | | 17 th | Effect of feedback (negative) on distortion and bandwidth of an amplifier | | | | | 18 th | RC coupled amplifier with emitter bypass capacitor | 12 th
Group-2 | Plot the frequency response
curve of phase shift and Wein
bridge Oscillator | | 7 th | 19 th | Emitter follower amplifier and its application | 13 th
Group-1 | 6. Use of IC 555 as monostable multivibrator and observe the output for different values of RC | | | 20 th | Class Testassignment | | 2 | | | 21 th | Sinusoidal Oscillators Use of positive feedback | 14 th
Group-1 | 6. Use of IC 555 as monostable multivibrator and observe the output for different values of RC | | 8 th | 22 th | Barkhausen criterion for oscillations | 15 th
Group-1 | Revision | | | 23 th | Different oscillator circuits-tuned collector, Hartley and Colpitts. Their working principles (no mathematical derivation but only simple numerical problems) | · | | | | 24 th | Different oscillator circuits-phase shift, Wien's bridge and crystal oscillator. Their working principles (no mathematical derivation but only simple numerical problems) | 16 th
Group-2 | Revision | | 9th | 25 th | Class Testassignment | 17 th
Group-1 | 7. Use of IC 555 as astable multivibrator and observe the output at different duty cycles | | | 26 th | Tuned Voltage Amplifiers Series and parallel resonant circuits and bandwidth of resonant circuits. | | * | | | 27 th | Multivibrator Circuits Working principle of transistor as switch | 18 th
Group-2 | 7. Use of IC 555 as astable multivibrator and observe the output at different duty cycles | | 10 th | 28 th | Concept of multi-vibrator: astable, and its applications | 19 th
Group-1 | 8. TouseIC741(op-amplifier) as Inverter, Adder, Subtraction, Integrator, | |------------------|------------------|---|-----------------------------|--| | | 29 th | Concept of multi-vibrator: monostable and its applications | | | | | 30 th | Concept of multi-vibrator: bistable and its applications | 20 th
Group-2 | 8. To useIC741(op-
amplifier) as Inverter,Adder,
Subtractor, Integrator, | | 11 th | 31 th | Block diagram of IC555 and its working and applications | 21 th
Group-1 | Revision | | | 32 th | IC555 as monostable multi-
vibrator | | | | | 33 th | IC555 as astable multi-vibrator | 22 th
Group-2 | Revision | | 12 th | 34th | IC555 as bistable multi-vibrator | 23 th
Group-1 | Revision | | | 35 th | Class Testassignment | | | | | 36 th | Operational Amplifiers Characteristics of an ideal operational amplifier and its block diagram | 24 th
Group-2 | Revision | | 13 th | 37 th | IC-741 and its pin configuration | 25 th
Group-1 | Test | | | 38 th | Definition of differential voltage gain, CMRR, PSRR, slew rate and input offset current | | | | | 39 th | Operational amplifier as an inverter, scale changer and adder | 26 th
Group-2 | Test | | 14 th | 40 th | Operational amplifier as a subtractor, differentiator and integrator | 27 th
Group-1 | Revision | | | 41 th | Class Test assignment | | | | | 42 th | Regulated DC Power Supplies Concept of DC power supply | 28 th
Group-2 | Revision | | 15 th | 43 th | Line and load regulation | 29 th
Group-1 | Test | | | 44th | Concept of fixed voltage, IC regulators (like 7805, 7905), and variable voltage regulator like (IC 723) | | • | | | 45 th | assignmentClass Test | 30 th
Group-2 | Test |